Accurate segmentation of 3D medical images such as MRI and CT is essential for clinical diagnosis and treatment planning. Foundation models like the Segment Anything Model (SAM) provide powerful general-purpose representations but struggle in medical imaging due to domain shift, their inherently 2D design, and the high computational cost of fine-tuning. To address these challenges, we propose Mamba-SAM, a novel and efficient hybrid architecture that combines a frozen SAM encoder with the linear-time efficiency and long-range modeling capabilities of Mamba-based State Space Models (SSMs). We investigate two parameter-efficient adaptation strategies. The first is a dual-branch architecture that explicitly fuses general features from a frozen SAM encoder with domain-specific representations learned by a trainable VMamba encoder using cross-attention. The second is an adapter-based approach that injects lightweight, 3D-aware Tri-Plane Mamba (TPMamba) modules into the frozen SAM ViT encoder to implicitly model volumetric context. Within this framework, we introduce Multi-Frequency Gated Convolution (MFGC), which enhances feature representation by jointly analyzing spatial and frequency-domain information via 3D discrete cosine transforms and adaptive gating. Extensive experiments on the ACDC cardiac MRI dataset demonstrate the effectiveness of the proposed methods. The dual-branch Mamba-SAM-Base model achieves a mean Dice score of 0.906, comparable to UNet++ (0.907), while outperforming all baselines on Myocardium (0.910) and Left Ventricle (0.971) segmentation. The adapter-based TP MFGC variant offers superior inference speed (4.77 FPS) with strong accuracy (0.880 Dice). These results show that hybridizing foundation models with efficient SSM-based architectures provides a practical and effective solution for 3D medical image segmentation.
Patch-based methods are widely used in 3D medical image segmentation to address memory constraints in processing high-resolution volumetric data. However, these approaches often neglect the patch's location within the global volume, which can limit segmentation performance when anatomical context is important. In this paper, we investigate the role of location context in patch-based 3D segmentation and propose a novel attention mechanism, LocBAM, that explicitly processes spatial information. Experiments on BTCV, AMOS22, and KiTS23 demonstrate that incorporating location context stabilizes training and improves segmentation performance, particularly under low patch-to-volume coverage where global context is missing. Furthermore, LocBAM consistently outperforms classical coordinate encoding via CoordConv. Code is publicly available at https://github.com/compai-lab/2026-ISBI-hooft
Foundation models such as Segment Anything Model 2 (SAM 2) exhibit strong generalization on natural images and videos but perform poorly on medical data due to differences in appearance statistics, imaging physics, and three-dimensional structure. To address this gap, we introduce SynthFM-3D, an analytical framework that mathematically models 3D variability in anatomy, contrast, boundary definition, and noise to generate synthetic data for training promptable segmentation models without real annotations. We fine-tuned SAM 2 on 10,000 SynthFM-3D volumes and evaluated it on eleven anatomical structures across three medical imaging modalities (CT, MR, ultrasound) from five public datasets. SynthFM-3D training led to consistent and statistically significant Dice score improvements over the pretrained SAM 2 baseline, demonstrating stronger zero-shot generalization across modalities. When compared with the supervised SAM-Med3D model on unseen cardiac ultrasound data, SynthFM-3D achieved 2-3x higher Dice scores, establishing analytical 3D data modeling as an effective pathway to modality-agnostic medical segmentation.
Promptable segmentation foundation models such as SAM3 have demonstrated strong generalization capabilities through interactive and concept-based prompting. However, their direct applicability to medical image segmentation remains limited by severe domain shifts, the absence of privileged spatial prompts, and the need to reason over complex anatomical and volumetric structures. Here we present Medical SAM3, a foundation model for universal prompt-driven medical image segmentation, obtained by fully fine-tuning SAM3 on large-scale, heterogeneous 2D and 3D medical imaging datasets with paired segmentation masks and text prompts. Through a systematic analysis of vanilla SAM3, we observe that its performance degrades substantially on medical data, with its apparent competitiveness largely relying on strong geometric priors such as ground-truth-derived bounding boxes. These findings motivate full model adaptation beyond prompt engineering alone. By fine-tuning SAM3's model parameters on 33 datasets spanning 10 medical imaging modalities, Medical SAM3 acquires robust domain-specific representations while preserving prompt-driven flexibility. Extensive experiments across organs, imaging modalities, and dimensionalities demonstrate consistent and significant performance gains, particularly in challenging scenarios characterized by semantic ambiguity, complex morphology, and long-range 3D context. Our results establish Medical SAM3 as a universal, text-guided segmentation foundation model for medical imaging and highlight the importance of holistic model adaptation for achieving robust prompt-driven segmentation under severe domain shift. Code and model will be made available at https://github.com/AIM-Research-Lab/Medical-SAM3.
Recent progress in medical vision-language models (VLMs) has achieved strong performance on image-level text-centric tasks such as report generation and visual question answering (VQA). However, achieving fine-grained visual grounding and volumetric spatial reasoning in 3D medical VLMs remains challenging, particularly when aiming to unify these capabilities within a single, generalizable framework. To address this challenge, we proposed MedVL-SAM2, a unified 3D medical multimodal model that concurrently supports report generation, VQA, and multi-paradigm segmentation, including semantic, referring, and interactive segmentation. MedVL-SAM2 integrates image-level reasoning and pixel-level perception through a cohesive architecture tailored for 3D medical imaging, and incorporates a SAM2-based volumetric segmentation module to enable precise multi-granular spatial reasoning. The model is trained in a multi-stage pipeline: it is first pre-trained on a large-scale corpus of 3D CT image-text pairs to align volumetric visual features with radiology-language embeddings. It is then jointly optimized with both language-understanding and segmentation objectives using a comprehensive 3D CT segmentation dataset. This joint training enables flexible interaction via language, point, or box prompts, thereby unifying high-level visual reasoning with spatially precise localization. Our unified architecture delivers state-of-the-art performance across report generation, VQA, and multiple 3D segmentation tasks. Extensive analyses further show that the model provides reliable 3D visual grounding, controllable interactive segmentation, and robust cross-modal reasoning, demonstrating that high-level semantic reasoning and precise 3D localization can be jointly achieved within a unified 3D medical VLM.
The recent integration of artificial intelligence into medical imaging has driven remarkable advances in automated organ segmentation. However, most existing 3D segmentation frameworks rely exclusively on visual learning from large annotated datasets restricting their adaptability to new domains and clinical tasks. The lack of semantic understanding in these models makes them ineffective in addressing flexible, user-defined segmentation objectives. To overcome these limitations, we propose SwinTF3D, a lightweight multimodal fusion approach that unifies visual and linguistic representations for text-guided 3D medical image segmentation. The model employs a transformer-based visual encoder to extract volumetric features and integrates them with a compact text encoder via an efficient fusion mechanism. This design allows the system to understand natural-language prompts and correctly align semantic cues with their corresponding spatial structures in medical volumes, while producing accurate, context-aware segmentation results with low computational overhead. Extensive experiments on the BTCV dataset demonstrate that SwinTF3D achieves competitive Dice and IoU scores across multiple organs, despite its compact architecture. The model generalizes well to unseen data and offers significant efficiency gains compared to conventional transformer-based segmentation networks. Bridging visual perception with linguistic understanding, SwinTF3D establishes a practical and interpretable paradigm for interactive, text-driven 3D medical image segmentation, opening perspectives for more adaptive and resource-efficient solutions in clinical imaging.
Weakly supervised semantic segmentation offers a label-efficient solution to train segmentation models for volumetric medical imaging. However, existing approaches often rely on 2D encoders that neglect the inherent volumetric nature of the data. We propose TranSamba, a hybrid Transformer-Mamba architecture designed to capture 3D context for weakly supervised volumetric medical segmentation. TranSamba augments a standard Vision Transformer backbone with Cross-Plane Mamba blocks, which leverage the linear complexity of state space models for efficient information exchange across neighboring slices. The information exchange enhances the pairwise self-attention within slices computed by the Transformer blocks, directly contributing to the attention maps for object localization. TranSamba achieves effective volumetric modeling with time complexity that scales linearly with the input volume depth and maintains constant memory usage for batch processing. Extensive experiments on three datasets demonstrate that TranSamba establishes new state-of-the-art performance, consistently outperforming existing methods across diverse modalities and pathologies. Our source code and trained models are openly accessible at: https://github.com/YihengLyu/TranSamba.
The application of self-supervised learning (SSL) and Vision Transformers (ViTs) approaches demonstrates promising results in the field of 2D medical imaging, but the use of these methods on 3D volumetric images is fraught with difficulties. Standard Masked Autoencoders (MAE), which are state-of-the-art solution for 2D, have a hard time capturing three-dimensional spatial relationships, especially when 75% of tokens are discarded during pre-training. We propose BertsWin, a hybrid architecture combining full BERT-style token masking using Swin Transformer windows, to enhance spatial context learning in 3D during SSL pre-training. Unlike the classic MAE, which processes only visible areas, BertsWin introduces a complete 3D grid of tokens (masked and visible), preserving the spatial topology. And to smooth out the quadratic complexity of ViT, single-level local Swin windows are used. We introduce a structural priority loss function and evaluate the results of cone beam computed tomography of the temporomandibular joints. The subsequent assessment includes TMJ segmentation on 3D CT scans. We demonstrate that the BertsWin architecture, by maintaining a complete three-dimensional spatial topology, inherently accelerates semantic convergence by a factor of 5.8x compared to standard ViT-MAE baselines. Furthermore, when coupled with our proposed GradientConductor optimizer, the full BertsWin framework achieves a 15-fold reduction in training epochs (44 vs 660) required to reach state-of-the-art reconstruction fidelity. Analysis reveals that BertsWin achieves this acceleration without the computational penalty typically associated with dense volumetric processing. At canonical input resolutions, the architecture maintains theoretical FLOP parity with sparse ViT baselines, resulting in a significant net reduction in total computational resources due to faster convergence.
Large-scale supervised pretraining is rapidly reshaping 3D medical image segmentation. However, existing efforts focus primarily on increasing dataset size and overlook the question of whether the backbone network is an effective representation learner at scale. In this work, we address this gap by revisiting ConvNeXt-based architectures for volumetric segmentation and introducing MedNeXt-v2, a compound-scaled 3D ConvNeXt that leverages improved micro-architecture and data scaling to deliver state-of-the-art performance. First, we show that routinely used backbones in large-scale pretraining pipelines are often suboptimal. Subsequently, we use comprehensive backbone benchmarking prior to scaling and demonstrate that stronger from scratch performance reliably predicts stronger downstream performance after pretraining. Guided by these findings, we incorporate a 3D Global Response Normalization module and use depth, width, and context scaling to improve our architecture for effective representation learning. We pretrain MedNeXt-v2 on 18k CT volumes and demonstrate state-of-the-art performance when fine-tuning across six challenging CT and MR benchmarks (144 structures), showing consistent gains over seven publicly released pretrained models. Beyond improvements, our benchmarking of these models also reveals that stronger backbones yield better results on similar data, representation scaling disproportionately benefits pathological segmentation, and that modality-specific pretraining offers negligible benefit once full finetuning is applied. In conclusion, our results establish MedNeXt-v2 as a strong backbone for large-scale supervised representation learning in 3D Medical Image Segmentation. Our code and pretrained models are made available with the official nnUNet repository at: https://www.github.com/MIC-DKFZ/nnUNet
Volumetric medical image segmentation presents unique challenges due to the inherent anatomical structure and limited availability of annotations. While recent methods have shown promise by contrasting spatial relationships between slices, they rely on hard binary thresholds to define positive and negative samples, thereby discarding valuable continuous information about anatomical similarity. Moreover, these methods overlook the global directional consistency of anatomical progression, resulting in distorted feature spaces that fail to capture the canonical anatomical manifold shared across patients. To address these limitations, we propose Coordinative Ordinal-Relational Anatomical Learning (CORAL) to capture both local and global structure in volumetric images. First, CORAL employs a contrastive ranking objective to leverage continuous anatomical similarity, ensuring relational feature distances between slices are proportional to their anatomical position differences. In addition, CORAL incorporates an ordinal objective to enforce global directional consistency, aligning the learned feature distribution with the canonical anatomical progression across patients. Learning these inter-slice relationships produces anatomically informed representations that benefit the downstream segmentation task. Through this coordinative learning framework, CORAL achieves state-of-the-art performance on benchmark datasets under limited-annotation settings while learning representations with meaningful anatomical structure. Code is available at https://github.com/haoyiwang25/CORAL.